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Abstract 

We consider a tixed design regression model where the regression function is assumed to be smooth, i.e., Lipschitz 
continuous, except for a point where it has only one-sided limits and a local discontinuity occurs. We propose a two-step 
estimator for the location of this change point and study its asymptotic convergence properties. In a first step, initial 
pilot estimates of the change point and associated asymptotically shrinking intervals which contain the true change point 
with probability converging to I are obtained. In the second step, a weighted mean difference depending on the assumed 
location of the change point is maximized within these intervals and the maximizing argument is then the final change 
point estimator. It is shown that this estimator attains the rate Op(n-t ) in the fixed jump case. In the contiguous case, the 
estimator attains the rate Op(n-~A;, 2), where A, is the sequence of jump sizes which in this case is assumed to converge 
to 0. For the contiguous case an invariance principle is established. A sequence of appropriately scaled deviation processes 
is shown to converge to a two-sided Brownian motion with triangular drift. 

k¢9"word. Asymptotics; Brownian motion; Discontinuity; Functional limit theorem; Nonparametric regression; Rate of 
convergence; Triangular drift; Weak convergence 

1. Introduction 

The problem of  locating a discontinuity or change point in an otherwise smooth curve is highly relevant 
for the statistical description and analysis o f  discontinuous phenomena; compare, for instance, McDonald and 
Owcn (1986) for various interesting applications. Estimates for change points in nonparametric regression 
functions have been proposed in Mfiller (1992) and Wu and Chu (1993) based on kernel estimates and in 
Mfiller (1993) based on locally weighted least-squares estimators. The locally weighted least-squares approach 
for change-point detection can be easily extended to cover generalized linear and quasi-likelihood models, using 
similar methods as in Fan et al. (1995). A somewhat different approach based on semi-parametric modelling 
was developed in Eubank and Speckman (1994). 

Expressed in terms of  "equivalent" kernels, all these estimators are different variants of  essentially the same 
idea: Take differences of  estimates of  right- and left-sided limits o f  the unknown regression function and 
then use the maximizing argument as change-point estimate. The auxiliary estimates of  one-sided limits of  
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functions used in these procedures are constructed by using boundary kernels (or, in case of  locally weighted 
least squares, equivalent boundary kernels) which have one-sided supports and center to a point on the edge 
of  the support in terms of  their moments. For this type of  procedure, using smooth kernels, respectively, 
weight functions, it was shown in Miiller (1992) that the Op-rate of  convergence is n -l+; '  for arbitrary small 
), > 0. The limit process of  an appropriately scaled deviation process was found to be a Gaussian process 
with parabolic drift. A corresponding invariance principle was obtained for both fixed and contiguous cases. 

We show here that the asymptotic rate of  convergence can be improved by adding a second step to the 
difference-based procedure. We thus effectively achieve an Op-rate of  convergence of  n - I  in the fixed jump 
case as well as a limit process. The limit process corresponds to a two-sided Brownian motion with drift in 
the "contiguous" case. 

More specifically, we consider the following model: Assume n measurements Yl.n, Y2 . . . . . . .  yn,~ are made, 
following the fixed design regression model 

Yi.n = g(xi, n ) + ~:i.n, xi,,, = i/n. ( 1.1 ) 

We assume that the errors ei,, are i.i.d, with Ee, i.n = 0 and Ee~n = a 2, and that the unknown regression 
function g can be decomposed into a smooth part h and a discontinuous part: 

g(x)  = h(x)  + A~lt~,l](x ), 0~<x~< 1, IA,,I = z'~ , (1.2) 

where IA(.) is the indicator function of  a set A, z is the unknown change point to be estimated, and An is the 
jump size which possibly depends on n; h is a "smooth" function, assumed to be Lipschitz continuous, but 
not necessarily differentiable, and "/n is a positive sequence of  real numbers. The "contiguous" jump size case 
(Bhattacharya and Brockwell, 1976), for which we will derive a functional limit theorem, is characterized by 
7, ~ cx~ as n -* c~, whereas in the fixed jump case, 7n - const. 

We note that no specific assumptions are necessary regarding the shape of  the "smooth" part h of  the 
regression function 9, beyond basic smoothness properties. This implies that the relevant measurements for 
estimating the change point ~ are only those in a (small) neighborhood around ~; if this neighborhood is 
sufficiently small, the actual shape of  h will not matter. It will become evident that for asymptotic results one 
may approximate the regression function in a small neighborhood of  r by a step function 

g ~ Cl -~- c2 l[r, ll with constants ct,c2. 

Assumptions and the proposed new estimator f for the change point z are introduced in Section 2, which also 
contains the main results (Theorems 2.1-2.3). We show in Theorem 2.1 that under reasonable assumptions, 
one obtains for the rate of  convergence 1~ r I -I,.2 - = Op(n ,n)" This implies 1~ - r I = Op(n - I )  for the fixed 
jump case. 

In Theorem 2.2 below, a sequence of  stochastic processes is introduced which have a properly scaled 
deviation between ~ and z as argument. The weak convergence of  this sequence of  processes to a two- 
sided Brownian motion with triangular drift is established. Theorems 2.1 and 2.2 then imply the limit result 
(Theorem 2.3) 

nT-£2(r - r) "~--* rr2 argmax  { W ( t )  - ~ 

for the contiguous case, where "~,, --, 2 .  Here W(-) stands for two-sided Brownian motion. These results 
indicate that the asymptotic convergence behavior of  the new estimator is superior as compared to asymptotic 
convergence properties established previously for kernel-based estimators or other estimators of  change points 
in a smooth regression setting under minimal restrictions on the errors el, n- 

In Section 3, it is demonstrated that a kernel-based pilot estimator exists which has the required properties. 
The proofs for the convergence rates are in Section 4, while those for the weak convergence and invariance 
principle are in Section 5. 
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2. Proposed estimators and main results 

In the following we omit indices n whenever feasible. We assume r E (0, 1 ) for the change point r defined 
in (1.2) and make the following assumptions: 

( A I )  The errors ei.n occurring in the model (1.1) form a triangular array of  i.i.d, random variables with 
E~i,n = 0 and var(,~;i,n) = o .2 < ~<~. 

(A2) The "smooth" part h of  the regression function in (1.2) is Lipschitz continuous on [0, 1]. 
(A3) The jump sizes A, in (1.2) satisfy ]Anl = y~-~, where )'n ~ z~, nT,~ -2 ~ oc ("contiguous" jump case). 

Or alternatively, 
(A3 t) The jump size is fixed at An = A. 
(A4) A pilot estimator :" of  r is available which satisfies 

P ( ! : ' - r l ~ < a n ) - - +  1 as n ~ ? x D ,  

for a sequence an satisfying 

7nan ~ O, ",'~(nan)-' ~ O, na]7,7' --~ O. 

Note that this implies an ~ 0 and nan --~ oc as n ~ oc. 
A specific example for a pilot estimator ? satisfying (A4) is provided in Section 3. Consider now the 

random intervals 

[ r 0 , r l ] = [ ~ - a n ,  ~ + a n ]  and [s0, s : ] = [ ~ - 2 a n ,  ~ + 2 a n ] .  

Let Zn be the counting measure on the points x~,n = i/n, i.e., 2n(A) is the count of  those xi.n satisfying x,.n E A 
for a set A C ,~. The statistic on which we base our proposed change point estimator ? is 

, , } 
2n{[t,s:l} ~ yi ~ Yi , (2.1) 

x, Er, .~,j  ~ .n{ [ s0 , t ) }  x, e tso. ,~ 

f 
Tn(t) = [(t - so)(Sl - t)] 1'2 

and we define 

? = arg max ITn(t)i. 
tElr,,,r~ ] 

(2.2) 

Note that Tn(t) is a weighted difference of  the means of  the observations falling into the subintervals defined 
by the partition of  [s0,sl] induced by t. 

Theorem 2.1. Assume (A1), (A2) and (A4). 
(A) I f ( A 3 ' )  is satisfied ( f ixed jump case), then 

I t  - ~ I = o A n -  ' ). 

(B) I f  (A3) is satisfied (contiguous jum p case), then 

I t  - ~l = OAn-~? '2n ) .  

(2.3) 

(2.4) 

The proofs are in Section 4. This result shows that in the nonparametric regression setting the convergence 
rate for the proposed change-point estimate is n -~, respectively - ~'2 n )'n, and therefore the same as the usual 
parametric rate for change points; compare Bhattacharya and Brockwell (1976) and Dfimbgen (1991) for these 
results when a sequence of  i.i.d, random variables is subject to a change in distribution at the change point. For 
this problem, nonparametric methods for change-point detection were also investigated by Darkhovski (1976) 
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and Carlstein (1988). In these works, "nonparametric" refers to the unknown distribution of  the sequence 
of  i.i.d, random variables, whereas in the setting considered here, "nonparametric" refers to the unknown 
regression function which is only supposed to be "smooth", but is not required to belong to a class of  finitely 
parametrized functions. 

Our main result concerns the weak convergence of  a suitably standardized deviation process to a two- 
sided Brownian motion with triangular drift. Let ~ denote weak convergence in the space c~( [ -M,M]) ;  cf. 
Billingsley (1968). 

Theorem 2.2. Let M > 0 be an arbitrary constant and assume that ( A I ) - ( A 4 )  hold, with ;,,,---, ~ (contiguous 
j ump  case). Then 

Z , ( t )  ~ Z( t )  on ~ ( [ - M , M ] ) ,  (2.5) 

where 

Zn(t) = (nT~-I){[(r - So)(Sl - r)]l:2/(Sl - so)}{iTn(r + n 

Z( t )  = r r W ( t ) -  ½ltl, 

and W( . )  is a two-sided Brownian motion. 

~7~t) l -  IT,(z)[}, (2.6) 

(2.7) 

In the fixed jump case, one obtains a random walk in the limit. The weak convergence result Theorem 2.2 
together with the consistency result of  Theorem 2.1 implies 

Theorem 2.3. Under ( A I ) - ( A 4 ) ,  with y,, ---* ~ ,  (contiquous jump  case), 

{ n?'~ "(r - 1:) ~ a~a rgmax  W(t)  - . 
tE~ 

(2.8) 

The existence of  a unique maximizer of  the r.h.s, of  (2.8) with probability 1 was demonstrated in 
Bhattacharya and Brockwell (1976). 

3. A kernel-based pilot estimator 

For the results in Section 2, a pilot estimator of  r is required which has property (A4). In this section, wc 
provide examples for such pilot estimators which are based on differences of  one-sided kernel estimates. These 
are aimed at estimating one-sided limits g , ( x )  = lim,lx 9(Y), ,q_(x) = lim~.rx g(y) ,  and are constructed with 
one-sided kernel functions K . ,  K_. As an example, one may use the fixed design nonparametric regression 
estimators 

1 n j,(x, t x , .  i U 2  X - -  U 

~, )+(X)=-~nz~ ly i  K+ (---~-)  du, 
(x, , - x , )  2 

(3.1) 

which target cg±(x) .  Here b = b~ is a sequence of  bandwidths, c is a constant depending on the kernel (see 
(K1) below), and we set x0 = 0, x , - i  = 1. The precise form of  the estimator is not important, however, and 
one might as well choose other one-sided smoothers, like locally weighted least-squares estimators, where one 
would fit local lines in one-sided windows. 
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For the kernel functions K+,K_ in (3.1) we require 
(K1) K_ has support [0, 1], is bounded and Lipschitz continuous with the possible exception of  finitely 

many points where only one-sided limits exist; K_. satisfies c = ,[0 ~ K _ ( x ) d x  > 0, fo ~ K _ ( x ) x d x  = 0 and 

• fo K - ( x ) x 2 d x  < oc. 

Examples are K _ ( x )  = 12x(1 - x ) ( 3  5x)lf0,t] or K_(x )  = 4(1 - 3 - ~X)ll0,11, both with c = 1. It is natural 
to relate K . ,  K_ by 

(K2) K , ( x )  = K _ ( - x ) .  
For the errors ~:, we make the additional assumption 
(K3) E[~:~I' < v~ for some s > 4. 

Finally, for the sequence of  bandwidths b,, we require 
(K4) b,, ~ O. nbn./logn ~ ~c, ?~(nb.) -I --, O. nb,27~ ~ ~ O, l i m i n f n ~ ,  n-2"r(nbnlogn) 12 > 0 for an r 

with 2 < r < s. where s is as in (K3). and 
(K5) 7,,[b,, + (logn/nb,,) 12] ~ O. 

where 7,, is the rate of  convergence of  the jump size as defined in (A3). Requirements (K4). (K5) on the 
bandwidth sequence are consistent and impose a lower bound on the rate of  convergence A,, ~ 0 for the 
contiguous change-point case. 

Defining the preliminary or pilot kernel estimate "~ of  r by 

"? = argmax ] ,0_(x)-  0_(x)[, (3.2) 
. ' (  

the desired result is 

Theorem 3.1. Under ( K I ) - ( K 5 )  and ( A I ) - ( A 3 ) ,  where (A3) can be replaced by (A3') ,  it holds that 

P(I? - rl'--<b,) ---' 1 as n ---, oc. (3.3) 

It is obvious that (3.3) implies (A4) for pilot estimators "~ (3.2), choosing a,  = b,. The method of  one-sided 
kernels may thus be employed as a first step to obtain appropriate initial estimators "?, from which we obtain 
in a second step the final estimator ? (2.2). 

P roof  of  Theorem 3.1. We note that the assumptions on the errors (K3) and on Kernels (K1), (K2) and 
bandwidths (K4) allow us to infer, by slightly modifying the arguments in Mfiller and Stadtmfiller (1987), 
that 

sup Ig+(x) - cg±(x)[ = Op b + \ - - ~ - - j  , (3.4) 
~E/ 

where the interval I is such that all points in the b-neighborhood of  L 

• 1 ; ( 1 ) =  { z E  [ 0 , 1 ] : l  z - x  I ~ < b , x E l } ,  

are continuity points of  g, i.e., g . ( y )  ---- g _ ( y )  for all y E .  ~,(I).  
If  we can ignore boundary effects, for instance by assuming that the range of  abscissae where data are 

available extends somewhat beyond [0, 1], then (3.4) can be applied on iF,, = [0, r - b] U [r + b, 1], 

sup IO±(x) - c o ± ( x ) l  = Op b + \ - 2 i f - /  " (3.5) 
rcL, 

By dcfinition o f  r, this implies 

A£li .0)(r)  - 0 - ( r ) [  ---+ ¢ in probability as n ~ oc. (3.6) 
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It follows from (3.5) and (3.6) by a geometric consideration that "~ = a rgmax [,~+(x) - (~_(x)[ then satisfies 

P ( [ z - ~ l  > b.)<<.P( sup 1.4±(x)-c.,:(x)l > ~ocA.~ - .0  as n ~  3¢, 
", xE[,, / 

according to (3.5) and (K5). [] 

We note that the familiar bias expansion can be carried out for ( ~ + ( x ) -  0 _ ( x ) ) -  c(g+(x)- g_(x)) without 
the assumption fK_(z)zdz = 0, if the smooth part h of  the regression function is differentiable at x. Thus, 
if h is differentiable everywhere, except possibly at r, then the result holds with condition ( K I )  modified by 
removing this additional moment condition. 

4. Proofs: Consistency 

Throughout this section, we use the functions 

p(t) = I(t - so)(sl - t)i ]:2, 

R(t)=p(t){(2.{[t,s,]})-' Z ,:i-(2.{[so, t)})-' Z ,:i}, s0 <t <s,, 
x,E[t, sL] x;E[so,t) -- 

and h(t) as defined in (1.2). Maxima and minima are denoted by V and A. We also define random variables 

V, = 2L(lz - s 0 [  v Iz - s l l ) ,  

where L is the Lipschitz constant of  h. We assume that ( A I ) - ( A 4 )  hold, with (A3) possibly replaced by 
(A3'), and define the event 

En = {z E [r0, rl]}. 

According to ( A 4 ) , P ( E . )  ~ 1 as n ~ v~, and, denoting by E c the complement of  any event E, this implies 
for any sequence ~. and any M > 0: 

P(C, l e -  vl > M)~<P({C,I~- TI > M}NE,)+p(Ec), 

so that it suffices for the consistency proof to consider what happens on events E,. The following arguments 
are therefore on events E,, which is not always explicitly stated. 

The proof of  Theorem 2.1 is by contradiction. Suppose that I ~ - v [  = Op(n-17~) does not hold. Then there 
exists a 6 > 0 and M, ~ o~ such that for events 

F~ = {,7~,; -2 I~ - rl > g , , }  

one has l i m s u p , ~  P(F,)  > 6 > 0. One can therefore find subsequences of  the n 's  where P(F,,) > 6/2 and 

P(E, ¢q Fn) > 6/4 for n large enough. (4.1) 

The proof of  Theorem 2.1 follows if 

P(lT,(z)l > IY,(OI) > 0. (4.2) 

as this leads to a contradiction with the fact that by definition, 

"~ = arg max IY~(t)l for all n. 
tE {r0, rl] 
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To show (4.2) ,  representat ions  o f  T.(t) are necessary  which relate differences in the values  o f  T. to differences 
in the arguments .  

L e m m a  4.1. For t E (so,sl ), on E., one has the followin.q representation .['or 1".: 

; . ,{[r.s,]} A ,b{[so, r)} } A,, + + 
r.(t) = p(t) )..{[t, sl]} ).,{[so, t)} p(t )Vn(t ) R(t), 

where sup ,~ , . . s  ' ~1 V,,(t)[ ~< V. = Op(a . ) .  

P roof .  Assuming  t < r, we find 

p(t) I (L,{[t.s~]}) --~ ~ h(x,) + ( . i .{ [ t , s~]})  Tn( t ) 
k ~,Elt, r) 

h(x,)}  + n(t)  I ~ S 0 ~  / ~  ~ II l 

.~,E[.~.t) 

. . ;..{[r, sl]} ~ 
= / ( t ) ~ g A , , + p ( t )  k ().,, {[ t ,  s, ] } ) -  Z 

x, Elt.s. ) 

Let L be the Lipschi tz  constant  o f  h. Thcn 

().,,{It, s,]}) '~ ~ h(x~)-(2.{[so, t )}) - '  ~ h(x,) 
.~,E[t.s~] x. c-- [ ~.:,. t) 

= (L,{[ t .s~l})- '  ~ ( h ( x , )  - h(O) - ()~.{[so.t)}) -~ 
,c, Eft, ~, ] 

~<2L(Ir-sol v i r -s l l )  = V. = O f ( a . )  

accord ing  to (A4) .  Thus, 

. .;..{[r, sl]} 
T,,(t) = pU )-z--=-.. - - -A , ,  + p(t)Vn + R(t). 

/.,{[t, sll} 

Simi lar  ca lcula t ions  yie ld  in the case t /> r: 

" ")'n{[S°'r)}A +p( t )V  n +R(t),  r . ( t )  -- t , ~ t ~ t ) }  . 

and (4 .3)  and (4.4)  together  imply  the result.  []  

L e m m a  4.2. On E.. it holds that 

(;..{[~.s,]} ;..{[s0,o} 
T.(r)I - IT.(~)'= [p(r)-  p(~) \)..{[~,s,]} A )..{[so, O} ) ]  IA.I 

+ {sign a . }  {[p(z) + p0?)] v. + R(r) - R(?)}. 

(h(xi) + A,,) 
x, Elt,.,'~ ] 

h(x,) - (;..{[so, t ) } )  -~ 

(h(xi) - h(r)) 
x, E [s,~. t ) 

h(xi)} + R(t). 
,:,Eis,,.t) 

(4.3) 

(4.4) 

(4.5)  
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Proof .  Observe  that by (A4) ,  

IA,7' [ g, = op(l), 

and note that 

[ A 2 ' R ( b ( p d ) ) - '  I 

= A,7'{(;..{[~.s,]})-' ~ , : i - ( z , { [ . , , o , ~ l } ) - '  
~,E[f .,. I 

{ z:' ~< 3?,, (na , ) -  ' max ~:i + max 
r - 2 a , ,  <~t << r r ~ t  <<. z*2a, ,  

.L6 /,r 

Since by K o l m o g o r o v ' s  inequal i ty  
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.r, Else,. ~l 

" Z max ei = Op([na,] " )  and max ~:i = Op([nan]l"2), 
r - 2 a , ,  <~t<~r .t,E t , t  ~ < ~ t ~ r - 2 a  " 'x, El~,t] ' 

it fol lows from (4.7)  and (A4)  that 

I~ , ; - 'R(~) (p (e ) ) -  ' I = Op()'n[nan]--1.2) = o p ( l  ). 

NOW applying Lemma 4.1 for t = ~, we obtain from (4.6), (4.8) 

[T,(~)[ = p (~ ) {  /'~ {[r's']} A 2" {[s°'z]} } 
{[<s~]} ,i,{[s0,-~]} IA']+{signA"}{P(bV"~-e(~)}' 

and ana logous ly  

IT,(z) I= P(v)I A,[ + {sign A.} {p(z)V~ + R(r)}. 

whence the result follows. 2] 

L e m m a  4.3. Let 

(~.o(t~,, ,l/  ~..{[,o.~)/) 
Oo : p(r) - pc*) k a . { [ e . . , ] }  A a,,{[~o. ~)}/ 

Then, on En, 

Qo/> I~ - r l /32 .  

Proof .  Let ~" < r. Then 

((s,  - ~) (~ - s o ) )  
Qo = p(r)- p(~) \(s, - ~) A (~ _ so) 

,~ , ( s ,  - r )  _ ( r -  ~)(s ,  - r ) ( ~ - S o ) ( s ,  - s o )  
= p ( r )  - p t  r )  (--~. I ~) p('?) [p({ ' )p(z)  + ('? - so) (sl - z ) ] '  

(4 .6)  

(4.7)  

(4.8) 
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Observe  that ('? - S o )  v ( r  - so) v (.s'l - ~) V (sl - r )  ~<,s'] - so = 4a, .  Therefore ,  

p(+)[p(+)p(r) + (~ --so) (sl - r ) ]  <~ (4a,,) [ (4a , )  z + (4a,,) 2] = 2 (4a,,) 3 . 

Note  also that (.s'l - r )  A (+ - so) ~>a,,. We find 

( r - ~ ) ( . s ' ,  - r ) ( ' ? - s o ) ( s l  - s o )  ( r - ' ? ) ( s , - Q ( f - s 0 )  ( r - f ) a ~  ( r - ~ ' )  
Qo >~ 2 (4a,,)3 = 2 (4a , )2  ~> 2 (4a,,)2 - 32 

Analogously .  for the case "? >~ r, 

( ~ - t ) ( s , - ~ ) ( t - s o ) ( s l - s o )  ( ~ - t )  
Q o =  > ~ - -  

p(-~) [ p ( ? ) p ( r )  + ( r  - so)(.s'l - ?)] 32 

Proof of Theorem 2.1. By Lemma 4.2, 

,T,,(z), - ,Tn(~), = Qo ,A,,, {1 -4 - ( s ign  A , , ) [ ( p ( r )  + p('~))V~ R ( r )  ~ R ( ? ) ]  } 
L ~Qoq~,,[ + a o l A ,  l J " (4.9)  

Now combine  L e m m a  4.3 with the fact that I'~ - z[ > n-I),~,M, on E,,NF,,. One finds that for arbitrarily small 
gl > 0, it holds for all sufficiently large n in the subsequence o f  n ' s  which satisfy (4.1),  that 

>~P P(r)+P(r)a. a , , V " < ~ J  NE' 'qF"  
o 

Since V~,"a,, = Op( l ) ,  and 7,M,,/(na~) ~ ~ by (A4),  this implies that for any arbitrary ~2 > 0, for sufficiently 
large n, 

} 1 OolA.[ <~] NE,  NF,, - P ( E , , N F , ) ,  < ~2. (4 .10)  

Some simple algebra shows that 

R(r) -- R(~) = [p(r)(2,{[r,s~]})-'  - p(~)(;c,,{tf, s ,]})- ']  Z ':' 
x, E l : ,~ ,  I 

+[p(~)(~..{[so,~)})-'--t,(OO..{[.,o,r)}) ~] ~ ,;, 
~. E [~,,. r ) 

+ s ign  (? -- r )  [p(~') (2, ,{[ '~,s,]}) -1 -- p(~)(2,{[So, f)})-1] Z ':' 

=: Q, - Q2 + Q3. (4 .11)  

Next.  we note that the function ¢ p ( t ) =  p(t)(2,{[t .sl]}) -] satisfies 

Icp(t,) - ¢p(t2)l ~< D _  It, - t21 
n 
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for ro <~t~, t2 <~r~ and a sufficiently large constant D. Observe that 

Z e,i ~< ~ <-.,max~< r+2a,, Z t;i = Op((nan) 1'2) 
x, El:.s,I x,E[r.t] 

by Kolmogorov's inequality. Therefore, by (A4), 

Q i / I A . ( ~ -  r)l = 0;,(7.  [na,,] -1 ) = op(l) ,  

and analogously, 

Q2/IA,,('~ - ~)1 = %(1 ). 

Let r < ~ without loss of  generality. Then on E. A E,, 

ni'~ rl ~ 1 , ~  v~l 

From this we obtain by the Hfijek-R6nyi inequality for constants C~, C2, 2 > O, 

<~P( max {~  i::~e~} >7~'2/C,)  \M,,;?, <~j<.2,,,,,, 

(~ )2 (~___~ ,~  1 )  
<~ 2na. --* O. 

(4.12) 

( a c ) ;"~  2 

(4.13) 

(4.14) 

j=M,,?~, j2 

] 
IP({IT.(z)I  - IT.(OI > O} NE, NF,,)-  P(E, NF,,)[ <~fl2 + ~2 < ~O, 

by choosing appropriate f12, ~2. It follows from (4.1) that P(zT,,(r)] > ITn('~)]) 
(4.2). [] 

> 8t-6, which implies 

< N En N Fn 
QoA. 4 " 

P [ { I T , , ( O I -  ITn(~)i > O} n E ~  n F . ]  

>~p[{ (p(z).-p(~))Vn ~}  
G Z  < n 

Now (4.10) and (4.15) imply that 

as n --, oc by (A4) and since M'n ~ 2 .  Now combing (4 .11)-(4 .14)  and Lemma 4.3 we obtain for any 
fll > O, f12 > 0, and for sufficiently large n, in analogy to (4.10), 

Qo[A~T <~[3, NE,,NF, - P ( E ,  nF~) < f12. (4.15) 

Since Q0 < 0, according to Lemma 4.3, it follows from (4.9) that 
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5. Proofs: Weak convergence 

We note that by (A4), 

Zn(t)ltr,, .r,l(t) = Z . ( t )  + op( l )  

for processes Z. (2.6), where the op-term is uniform in t. It is therefore sufficient to consider in the following 
only what happens on the events E. = {r0 ~<t~<rl }, as in Section 4. Consider sequences 

--I 2 u . ( t )  = r ~- n )'.t for t C ~ ,  

define 

~(t) = [(t - so)/(sl  - t)l b2 , 

and consider processes 

X~(t)  = nA.p(r) (s~  - so) - I  [T . (u . ( t ) )  - Tn(t)]. 

We introduce the notations 

Sn(v ,z)  = Z ci for v ~ z ,  
x,E[~',z] 

defining Sn(z, v) = -Sn(v ,z )  in case that v > z. 

Xn(t )  = nAnp(t)(s~ - so) -~ p(un( t ) )  )~n{[un(t),sl]} 2n{[so, u . ( t ) ) }  

and 

)(n(t) = AnS.(un(t) ,  t )  + Xn( t ) .  (5.1) 

Lemma 5.1. It  holds" that 

Xn(t )  = )(n( t )  + Op(1), (5 .2 )  

where the remainder term is uni form in t E [ - M , M ] .  

Proof. From Lemma 4.1, 

X . ( t )  = nA.p(z) (s~  - so) - I  { [R(u . ( t ) )  - R(t)] + [(p(un(t))  - p( t ) )  Op (an)]} + )(n(t) 

= nAnp( t ) ( s l  - so) - I  {[[~(un(t)) - ~ ( t ) ] n - I S . ( t ,  sl )] 

+ [([~(r)] - l  -- [~(un(t))] - l  )n-~Sn(so, z)] 

+ [([p(u.( t ) )]  - I  - [p(r)] - I  )(sl - so )n - ISn (un( t ) , t ) ]  

+ [(p(un(t))  - p(t ) )Op(a . ) ]  + (sl - s o ) [ p ( t ) ] - I n - l S n ( u n ( t ) , t ) }  + X n ( t )  

= I + II + l l I  + IV + AnSn(u . ( t ) , z )  + X n ( t ) .  
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Next we evaluate  I - I V .  By a Taylor  expansion for ~ around r and app ly ing  (A4) ,  we obtain 

(r 1 .,2 1.2) 
- . l l u , , ( t ) _ z [ n  l [ n a , ] l 2 )  ;" Ill - -  o , , , / f i Z a , , /  - -  o , , (1 )  

I11l -- OpC[[nan]-l'/2n]12) = Op(l) ,  

] l I l ] =  Op(n7~la~ -I ]u,,(t) - r ] n  I]n(u,(t) - r)] 12) = Op( [nan]  172n) = op(1)  

[IV] = Op(nT~la]) = op ( l ) ,  

where the remainder  terms are found to be uniform in t c [ - M , M ] .  [] 

L e m m a  5.2. It holds that 

I i t l + o ( l ) .  E2,,(t) - -  - 7  

£ n ( t )  - E 2 . C t )  = ~ , ,S . (u , , ( t ) ,  ~) + o(1 ), 

where the remainder terms are uniform in t E [ -M,  M]. 

Proof .  As  ES,,(u,M),t)  = 0, we find from (5.1)  that 

EX,,(t) = E 2 , ( t ) .  

Note that 

.~n(t) = nAnp(r)(sl - So )  I {[7(u,~(t)) - ~( r ) ] ( s l  - z)A,~ 1 {u . ( t )< :  } 

-F([OC(un(t ) )] - I  - [~('t')] -I )('c -- so ) Anl  {u,,(t)>~r} }. 

Apply ing  a Taylor  expansion for ~ around r, we find that 

) ( , , ( t ) = n A , , p ( z ) ( s , - s o ) - ' { [  1 " --So ~p-I(r) 's l  ) - r) 
sl - r (u~(t 

- r) 2] (st - r)A,,l {,,,,It><~} 
I 

+ O (  an 2 )( un( t ) 
I 

+ L- - + 0 , + , - .  + + ,  +,, 

1 2 = -~nA~ lu,M) - rl + O ( n y 2 2 / a . ) ( u . ( t )  - r )  2 , 

where the O- terms are uniform in t. Therefore,  

E X n ( t ) - -  -½ +tl + o(1) 

by (A4), which implies (5.3). Moreover, 

X,,Ct) = EX, , ( t )  + o(I ), 

which together with (5.1) and (5.5) implies (5.4). [] 

Proof  of  Theorem 2.2. By (5 .4)  and Donske r ' s  theorem, 

X, ( t )  - EX,,(t) = 3~S,(u~(t), r )  -4- o(1)  ~ crW(t), t C [ - m , m ] .  

(5.3)  

(5.4)  

(5.5) 
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I Since by (5.3), Xn(t) ~ a W ( t ) -  ~ I t l ,  and as Xn and ,~, have the same limits according to (5.2), this implies 

I X~(I) ~ t rW( t )  - ~ Itl, t E [-M,M].  

Furthermore, we have the following facts, regarding processes Z,,(.) (2.6): 

Zn(t) = IX, M) + nAnp(z)(st  - so) -~ Tn(z) I - I n A n p ( z ) ( s ~  - s o )  - ~  To(z) I , (5.6) 

n A . p ( z ) ( s l  - s o )  -I T,,(z) = nA~p2(z)(sl  - s0)-I(l  + o p ( l ) )  -~P +.zx~, (5.7) 

X,,(t)  is stochastically bounded. (5.8) 

The result then follows from (5.6)-(5.8) and (5.3). [] 
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